If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+102x-321=0
a = -3; b = 102; c = -321;
Δ = b2-4ac
Δ = 1022-4·(-3)·(-321)
Δ = 6552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6552}=\sqrt{36*182}=\sqrt{36}*\sqrt{182}=6\sqrt{182}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-6\sqrt{182}}{2*-3}=\frac{-102-6\sqrt{182}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+6\sqrt{182}}{2*-3}=\frac{-102+6\sqrt{182}}{-6} $
| 11x+5x–1=64+1–17x= | | 3x^2+102x-321=0 | | x/4-4=x/5 | | -5(-5x+3)-9x=4(x-6)-1 | | 2v-5=-31 | | -3v-1=4(v-2) | | x+(7x-6)=90 | | X^2+12x=36=25 | | -7a+3=59 | | 10x-20=8x-16 | | 10x-20=8x=16 | | 3x+44=10x-20 | | ((d+8)/(d-2))-2=9/4 | | 8-n=-7 | | 13-(2c-2)=2(c+2)+3c | | 3x+44=8x-16 | | 13-(2c-2)=2(c+2)=3c | | 10x+-20+3x+44=8x-16 | | 4x-(-3x+4)=7x-2 | | 10x-20=3x+44 | | x/44=88 | | 4(12x+4)=200 | | 4(12x+4=200 | | x2+2x–72=0. | | 4(6x6)=360 | | 2(5x+7)=150 | | 1/8(8x-2)=-7/8-7/8 | | 7/4a-3=2+9/2a | | 2(4x+6)=200 | | 2(4x+6)=280 | | 2(x-5)-4=-2(-7x+1)-3x | | 180=74+c |